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We present a theoretical analysis of optical parametric oscillations through four-wave mixing in a nonlinear
high-Q whispering-gallery-mode resonator. It is shown that even a small flux of pump photons is sufficient to
reach the threshold of the oscillations. We demonstrate that due to narrow bandwidth of the resonator modes as
well as the high efficiency of the resonant frequency conversion the oscillator produces a stable narrow-band
beat note of the pump, signal, and idler waves making an all-optical secondary frequency reference feasible.
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I. INTRODUCTION

Hyperparametric optical oscillationf1g, also known in fi-
ber optics as modulation instabilityf2g, is based on four-
wave mixing sFWMd among two pump, signal, and idler
photons, and results in the growth of the signal and idler
optical sidebands from vacuum fluctuations at the expense of
the pumping wave. The hyperparametric oscillations are dif-
ferent from the parametric ones. The parametric oscillations
sid are based onxs2d nonlinearity coupling three photons, and
sii d have phase matching conditions involving far separated
optical frequencies, that can only be satisfied in birefringent
materials in the forward direction. In contrast, the hyperpara-
metric oscillationssid are based onxs3d nonlinearity coupling
four photons, andsii d have phase matching conditions in-
volving nearly degenerate optical frequencies that can be sat-
isfied in most materials both in the forward and backward
directions.

Observations of hyperparametric oscillations in transpar-
ent solids are hindered by the small nonlinearity of the ma-
terials, so the oscillations are usually observed with pulsed
pumping light, to increase optical intensity, and with optical
fibers, to increase the interaction lengthf2,3g. A significant
reduction of the oscillation threshold is possible by means of
various resonant structures. The use of a cavity could sub-
stantially enhance the efficiency of the FWM process result-
ing in the observation of oscillations in the continuous wave
scwd regime f4g. Oscillations have also been observed in
atomic vapor cells placed in optical resonatorsf5–8g. Ul-
tralow threshold mirrorless cw hyperparametric oscillations
were obtained in multilevel coherent mediaf9g, where the
medium itself played the role of the resonator. Recently, the
study of hyperparametric oscillations had an interesting twist
connected with the development of whispering-gallery-mode
sWGMd as well as photonic crystalf10,11g microresonator
technology.

The oscillations occurring in cavities or cavitylike sys-
tems filled with transparent solids were analyzed theoreti-
cally, e.g., in isotropic photonic crystalsf12g, and were ob-
served experimentally in crystalline WGM resonators
f13,14g. It was suggested, in particular, that the narrow-band
beat-note signal between the optical pump and the generated
sidebands emerging from a high-Q WGM resonator could be

used as a secondary frequency referencef14g.
The hyperparametric oscillations involving an atomic sys-

tem placed into a cavityse.g., Ref.f5gd and oscillations oc-
curring in an optical cavity filled with a transparent nonlinear
Kerr mediumf13,14g have certain differences. For instance,
in the first case, the oscillation frequency is given by both the
frequency of the atomic two-photon Raman transition and
the resonator mode structure, while in the second case it is
determined by the resonator mode structure only. On the
other hand, the mathematical description of both processes is
similar because they both are based on the four-wave mixing.
The nonlinear resonators can be considered “artificial at-
oms,” like semiconductor quantum dots. This is especially
true for open high-Q microresonators made of dispersive
nonlinear dielectrics because modes of the resonators are
substantially nonequidistant and resonantly enhanced nonlin-
earities are high.

Here we theoretically study hyperparametric oscillations
in a nonlinear ring, e.g., WGM resonator, primarily focusing
on the properties of the beat-note signal produced by mixing
the optical pump and the generated sidebands on a fast pho-
todiode. For a resonator with gigahertzs difference between
frequencies of the neighboring resonator modes belonging to
the same mode familyfthe free spectral rangesFSRdg, this
beat note signal is at microwave frequencies. We show that
the beat-note signal depends on the FSR frequency of the
resonator. We found that the beat note does not experience a
frequency shift due to the self- and cross-phase modulation
effects because of the intrinsic symmetry of the FWM pro-
cess in the resonator

The phase stability of the signal increases with increase of
theQ factor of the resonator modes for the same given value
of the pump power. There exists a maximum of the phase
stability sminimum of the phase diffusiond of the beat-note
signal that does not depend either on the pump power orQ
factor of the modes. Keeping in mind that WGM’sQ factor
can exceed 1010 sa few tens of kilohertz resonance linewidthd
f15g, we find the Allan deviation factor of the oscillations to
be smaller than 10−12 s−1/2 for sub-mW optical pumping. The
pump threshold could reach mW levels for reasonable ex-
perimental parameters.

This paper is organized as follows: In Sec. II we introduce
the basic equations. In Sec. III we discuss the steady-state
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solution of the equations for expectation values and find the
oscillation threshold. In Sec. IV we study phase diffusion of
the generated microwave signal. In Sec. V we discuss simi-
larities and differences in the cavity-based and atomic media
based oscillators. Calculation details are presented in the Ap-
pendixes.

II. BASIC EQUATIONS

Optical oscillations could occur in an optical fiber or in a
resonator that is filled with a medium possessing Kerr non-
linearity f2g. The nonlinearity results in a four-photon pro-
cess like"v0+"v0→"v1+"v2, also known as a hyperpara-
metric process, which leads to generation of coherent optical
signals from vacuum fluctuations at frequenciesv1 and v2.
Generally, in a resonator the following relationships hold:
v1<v0+vFSRandv2<v0−vFSR, wherev0 is the frequency
of the external pumping wave in resonance with one of the
resonator’s modes, andvFSR stands for the FSR frequency
interval of the resonator. A further increase of the optical
pumping power and appropriate phase matching conditions
could result in the generation of numerous sidebands; how-
ever, for the sake of simplicity, we restrict our consideration
to three modes.

Langevin equations for the slow amplitude operatorsA,
B+, andB− of the intracavity fields can be presented in the
form ssee Appendix Ad

Ȧ = − G0A + igfA†A + 2B+
†B+ + 2B−

†B−gA + 2igA†B+B−

+ F0 + Fc0, s1d

Ḃ+ = − G+B+ + igf2A†A + B+
†B+ + 2B−

†B−gB+ + igB−
†AA

+ F+ + Fc+, s2d

Ḃ− = − G−B− + igf2A†A + 2B+
†B+ + B−

†B−gB− + igB+
†AA

+ F− + Fc−, s3d

where

G0 = isv0 − v + k0sTdd + g0 + gc0,

G+ = isv+ − ṽ+ + k+sTdd + g+ + gc+,

G− = isv− − ṽ− + k−sTdd + g− + gc−.

v0, v+, andv− are the eigenfrequencies of the optical cavity
modes;g0, g+, and g− are the internal decay rates of the
modes;gc0, gc+, andgc− are the decay rates due to external
coupling;v is the carrier frequency of the external pumpsAd,
ṽ+ and ṽ− are the carrier frequencies of generated lightsB+
and B−, respectivelyd. These frequencies are determined by
the oscillation process and cannot be controlled externally.
However, there is a ratio between themsenergy conservation
lawd:

2v = ṽ+ + ṽ−. s4d

Coefficient kksTd describes the frequency shift of the
mode k due to the temperature change. This coefficient

should be taken into account because absorption of the pump
and the generated light results in a change of the resonator
temperature. Because the modes are confined nearly in the
same geometrical volume, the thermal frequency shift is
nearly the same for all the modes.

Thermal nonlinearity is important in high-Q WGM reso-
natorsf15–18g. For instance, because of the thermal nonlin-
earity, the trace of the resonance on the screen of oscillo-
scope changes depending on the laser power and the speed
and direction of the laser scan, i.e., coefficientksTd generally
depends on time if external conditions vary. The dependence
can be described with two intrinsic relaxation time constants,
one of which is responsible for flow of heat from the mode
volume to the rest of the resonator, and the other for heat
exchange between the resonator and the external environ-
ment. To reduce the influence of nonlinearity on the mea-
surement results, the laser scan should be either fast com-
pared with the relaxation constants and the light power must
be small, or the temperature shift should be compensated by
introducing electronic feedback into the system that tunes the
laser frequency with the mode shiftf14g. In the latter case
ksTd reaches a steady-state value and can efficiently be con-
sidered as a constant.

Thermal dependence of the index of refraction for trans-
parent crystals and fused silica can significantly exceed the
frequency shift due to self- and cross-phase modulation ef-
fects induced by the electronic nonlinearity of the material.
For example, for a calcium fluoride resonatorkmsTd
=vmn0

−1]n/]T.vm310−5 K−1 svm is the resonant fre-
quency of a moded. This frequency shift is five orders of
magnitude larger than the width of the resonance ifQ
=1010 for a single degree of temperature change. This shift
generally does not lead to the saturation of the FWM process
because it mildly changes the free spectral range of the reso-
nator:dFSRsTd=vFSRn0

−1]n/]T.vFSR310−5 K−1, and barely
changes the behavior of the beat note of the pump and side-
bands. Because FSR depends on temperature, the tempera-
ture can be used to tune the oscillator frequency.

Dimensionless slowly varying annihilation operatorsA,
B+, andB− in Eqs.s1d–s3d are normalized such that average
ukA†Alu, ukB+

†B+lu, andukB−
†B−lu describe average photon num-

ber in the corresponding modes,

g = v0
n2

n0

"v0c

Vn0
, s5d

is a coupling constant,n2 is an optical constant that charac-
terizes the strength of the optical nonlinearity,n0 is the linear
refractive index of the material,V is the mode volume, andc
is the speed of light in the vacuum.

Langevin forceFc0 stands for the external pumping of the
system with nonzero expectation value

kFc0l =Î2gc0P0

"v0
, s6d

whereP0 is the pump power of the mode applied from the
outside. Expectation values of the other forces are equal to
zero. All the forces are uncorrelated. Commutation relations
for them arefFjstd ,Fj

†st8dg=2g jdst− t8d.
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The amplitudes of the fields leaving the system could be
obtained from

Aout = Î2gc0"v0SA −
Fc0

2gc0
D , s7d

B±out = Î2gc±"v±SB± −
Fc±

2gc±
D , s8d

where Aout
† Aout sB± out

† B± outd describes power of the carrier
ssidebandsd exiting the resonator.

III. SOLUTION: EXPECTATION VALUES

Solving Eqs.s1d–s3d in steady statessee Appendix Bd,
keeping expectation values only, and assuming that the
modes are identical, i.e.,g++gc+=g−+gc−=g0+gc0, which is
justified by observation with actual resonators, we find the
oscillation frequency for generated fields,

v − ṽ− = ṽ+ − v =
1

2
sv+ − v−d, s9d

i.e., the beat-note frequency depends solely on the frequency
difference between the resonator modessFSR frequencyd and
does not depend on the light power, or the laser detuning
from the pumping mode. This result shows an advantage of
our oscillator over the oscillator based on atomic coherence,
e.g., where the oscillation frequency depends on the ac-Stark
shift spump powerd f19g.

Threshold optical power can be found from the steady-
state solution of sets1d–s3d,

Pth . 1.54
p

2

g0 + gc0

2gc0

n0
2V

n2lQ2 , s10d

where the numerical factor 1.54 comes from the influence of
the self-phase modulation effects on the oscillation threshold.
The threshold value for a CaF2 resonator isPth<0.3mW,
where n0=1.44 is the refractive index of the material,n2
=3.2310−16 cm2/W is the nonlinearity coefficient for cal-
cium fluoride, V<10−4 cm3 is the mode volume,Q
=v0/2sg0+gc0d=63109, g0=gc0, and l=1.32mm. Nearly
the same estimations are valid for fused silica resonators.

We solve Eqs.s1d–s3d numerically and evaluate the de-
pendencies of the output pump and a sideband power on the
value of the input pump power, focusing on two particular
cases of an idealsor overcoupledd resonatorg0=0 sgc0

@g0d, and critically coupled resonatorg0=gc0.
For the overcoupled resonator the sum of the powers of

the sidebands and the pump leaving the resonator is always
conserved:PA out+PB+ out+PB− out=P0. The dependencies of
the values of the powers on the pump power are presented in
Fig. 1. Here and in what follows the value of the pump
sPA outd as well as sidebandsPB outd power is shown normal-
ized with the value of the input pump powersP0d. The input
pump power is shown normalized with the oscillation thresh-
old powersPthd.

As is shown in Appendix B, the value of the detuning of
the carrier frequency of the pump from the frequency of the

corresponding resonator mode cannot be varied arbitrarily.
The detuning allows us to compensate for the frequency shift
of the mode due to self- and cross-phase modulation effects.
The smallest possible detuning, when the oscillations still
exist, is equal tov0−v+ksTd.1.733sgc0+gcd.

To study the stability of the system we note that small
initial perturbations of all parameters of a stable oscillator
should decrease in time. We find eigenvalues of equations
that describe the time evolution of the fluctuations of the
systemfsee Appendix C, Eqs.sC1d–sC6dg. The oscillations
are stable in the region of parameters where all the eigenval-
ues correspond to the solutions decreasing in time. This re-
gion is located between pointsA andB on our plotsssee Fig.
1 and following figuresd. It is worth noting that the stability
conditions are different from those for a resonator with in-
ternal pumping.

Let us now consider the FWM process in a critically
coupled resonator and compare it with the process in an
overcoupled resonator. We assume that the loadedQ factor
as well as the other parameters of the modes stay the same in
both cases, with the exception of the ratio between the values
of the transmission and absorption rates. We found that the
sideband power decreases four times for the critically
coupled resonator compared with the case of overcoupled
resonatorssee Fig. 2d, though the functional shape of the
dependence is the same in both cases. The transmission
curve for the pump light changes compared to the over-
coupled systemssee Fig. 3d. The difference arises because a
significant amount of the pump as well as sideband power is
absorbed in the critically coupled resonator.

The dependence of the power of the pump radiation leav-
ing the critically coupled resonator is presented in Fig. 3. The
dashed line stands for the transmission of the resonator for
the pump light in the case of no oscillations excitedstrivial
solutiond, ukB±l u =0. The solid line shows the region where
oscillations can be excited. In that region the solution de-
picted by the dashed line is not stable because sidebands start
to grow from fluctuations taking power from the pump light.
Only the section of solid curve located between pointA and
B corresponds to the stable oscillations.

The dependencies of the maximum power of the gener-
ated sidebands and the corresponding optimum tuning of the
pump laser frequency on the pump power are shown in Fig.

FIG. 1. Dependence of the pumpsleftd and a sidebandsrightd
power on the input pump power for the case of identical resonator
modes and pump frequency such thatv0−v+ksTd=1.8gc0. Stable
oscillations occur in the region confined between pointsA and B
spoint C shows the center of the regiond.
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4 for the case of an overcoupled resonator. The value of the
optimum detuning increases with the pump power to com-
pensate for the power-dependent phase mismatch arising
from the cross-phase modulation effectf2g. This mismatch

results from the different frequency spaces between one side-
band and the pump, and the pump and the other sideband
fsee the second terms in the right-hand side of Eqs.s1d–s3dg.

We considered only three interacting modes in the model,
however, experiments show that a larger number of modes
could participate in the processf13,14g. Those modes could
change the efficiency curvesFig. 4d rather significantly. The
number of participating modes is limited by the nonequidis-
tance of the modes of the resonator. Generally, modes of a
resonator are not equidistant because of the second-order dis-
persion of the material and the geometrical dispersion given
by the mode structure. We introduceD=s2v0−v+−v−d /g0

to take the second-order dispersion of the resonator into ac-
count. If uD u ù1 the modes of the resonator are essentially
not equidistant and therefore multiple harmonic generation is
not possible.

Geometrical dispersion for the main mode sequence of a
WGM resonator isD.0.41c/ sg0Rn0m

5/3d f20,21g, for a
resonator with radiusR; v+, v0, andv− are assumed to be
m+1, m, and m−1 modes of the resonatorsvmRnvm
=mc, m@1d. For R=0.4 cm,g0=23105 rad/s,m=33104

we obtainD=7310−4, therefore the geometrical dispersion
is relatively small. However, the dispersion of the material
can be large enough. For instance, using Sellmeier’s disper-
sion equation for CaF2 we find D.0.1 at 1.3-mm laser
wavelength. This implies that approximately three sideband
pairs can be generated in the system. For small resonators
geometrical dispersion could greatly exceed the material dis-
persion.

Let us now discuss the phase between generated side-
bands, and the influence of this phase on the power of the
signal generated on a photodiode that absorbs both the car-
rier and sidebands. The average power at the beat-note fre-
quencysv+−v−d /2 is equal to

Pmw= 2R2ruAout
* B+ out + B− out

* Aoutu2, s11d

whereAout andB± out are to be found from Eqs.s7d and s8d,
R is a transformation coefficient of the optical power to a
photocurrent, andr is the resistance at the output of the
photodiode. The typical values areR=0.7A/V, and r
=50V.

It is convenient to introduce parameterF, describing the
relative phase between generated sidebands:

F =
uAout

* B+ out + B− out
* Aoutu2

suAout
* B+ outu + uB− out

* Aoutud2 . s12d

If F=0, the phases of the sidebands arep-shifted with re-
spect to each other and the light produced in the FWM pro-
cess is phase modulated. In the opposite case, whenF=1,
the light is amplitude modulated. We found that for the over-
coupled resonator the signal is mostly phase modulated,
while for the critically coupled resonator it is mostly ampli-
tude modulatedsFig. 5d.

IV. SOLUTION: PHASE DIFFUSION

Let us present the slow amplitudes of the field as

A = sukAlu + dAdeisf0+df0d, s13d

FIG. 2. Dependence of the sideband power on the input pump
power for the case of identical resonator modes and pump fre-
quency such thatv0−v+ksTd=1.8sg0+gc0d sg0=gc0d. Stable oscil-
lations occur in the region between pointsA andB spoint C shows
the center of the regiond.

FIG. 3. Dependence of the pump power on the input pump
power for the case of identical resonator modes and pump fre-
quency such thatv0−v+ksTd=1.8sg0+gc0d. Stable oscillations oc-
cur in the region between pointsA andB spoint C shows the center
of the regiond. The dashed line shows the response of the system
with no oscillations excited.sbd stands for the details of the pump
power dependence in the stability region.

FIG. 4. Optimum sideband powersleftd achieved at the optimum
detuning of the pump laser frequencysrightd versus the input pump
power for the case of identical modes of an overcoupled resonator.
Solid line stands for a resonator with no dispersionsD=0d, dashed
line stands for the resonator with nonzero dispersionsD=0.3d. It is
easy to see that at sufficiently large optical pump power and opti-
mum pumping frequency complete redistribution of the pump
power into sidebands is possible.
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B+ = sukB+lu + dB+deisf++df+d, s14d

B− = sukB−lu + dB−deisf−+df−d, s15d

wheredA, dB+, anddB− stand for the amplitude fluctuations
of the fields, anddf0, df+, and df− stand for the phase
fluctuations of the fields. For the sake of simplicity we con-
sider the case of identical modes, whenukB+l u = ukB−l u
= ukBlu.

Using such a decomposition we obtain linearized differ-
ential equations for the fluctuationsssee Appendix Cd. Solu-
tion of these equation allows us to find phase diffusion for
the beat-note signal, proportional toAout

* B+ out+B− out
* Aout, as

well as to study the stability of the oscillations.
The phase diffusion coefficient of the beat-note signal

could be estimated from

Dmw= H1 +F1.54
PB out

Pth
Sg0 + gc0

2gc0
D2G2J

3
sgc0 + g0d2

4

"v0

PB out
, s16d

wherePB out is the output power of a sideband. This expres-
sion is valid for the oscillations not far from the oscillation
threshold. The expression could be optimized at

PB opt=
Pth

1.54
S 2gc0

g0 + gc0
D2

. s17d

The minimum phase diffusion coefficient is

Dmin =
sgc0 + g0d2

2

"v

PB opt
= v0

2g0 + gc0

2gc0

"v0n2l

4pVn0
2 . s18d

The minimum phase diffusion does not depend on the pa-
rameters of the resonator except its volume. It is interesting
to note that the oscillations are more stable for larger reso-
natorsslarger mode volumesVd.

The Allan deviation indicating the stability of the gener-
ated beat-note signalsat microwave frequency for larger
resonatorsd is sbeat/vbeat=s2Dmw/ tvbeat

2 d1/2. We could esti-
matesbeat/vbeat.6310−14/Ît for v0.v=1.431015 rad/s,
vbeat=531010 rad/s, andg0=gc0. The resonator tempera-
ture should be properly stabilized to achieve the estimated
stability.

V. DISCUSSION

It is easy to see from Eq.s10d that the efficiency of the
hyperparametric process increases with a decrease of the
mode volume. Reducing the size of the resonator could result
in a dramatic reduction of the threshold for the oscillation.
Since the mode volume may be roughly estimated asV
<2plR2, it is clear that reducing the radiusR by an order of
magnitude would result in two orders of magnitude reduction
in the threshold of the parametric process. This could place
WGM resonators in the same class as the oscillators based on
atomic coherencef9g. However, unlike the frequency differ-
ence between sidebands in the atomic oscillator, the fre-
quency of the WGM oscillator could be free from powersac
Starkd shifts and the stability of the microwave beat-note
signal generated in the process increases with the oscillation
threshold increases18d.

The oscillations in nonlinear media could be masked with
stimulated Raman scatteringsSRSd and other nonlinear ef-
fects. This is also expected and observed in WGM resona-
tors. For instance, the threshold for the SRS process in a
WGM resonator may be estimated fromf22g

PR .
p2n0

2V
Gl2Q2 , s19d

whereG is the Raman gain coefficient. For fused silica and
some transparent crystalsG.10−11 cm/W. Comparing Eqs.
s10d and s19d we estimatePth/PR<1.

Hence an observation of secondary lines in the vicinity of
the optical pumping line in the SRS experiments with WGM
silica microresonators was interpreted as four-wave mixing
between the pump and two Raman waves generated in the
resonator, rather than as the four-photon parametric process
based on electronic Kerr nonlinearity of the mediumf22g. An
interplay among various stimulated nonlinear processes has
also been observed and studied in droplet spherical micro-
cavitiesf23g. Therefore additional studies of the effects are
important and crystalline WGM resonators could be helpful
here. In contrast with resonators fabricated with amorphous
materials and liquids, high-Q crystalline resonators would
allow a better discrimination of the third-order nonlinear pro-
cesses and the observation of pure hyperparametric oscilla-
tion signals because of additional selection rules imposed by
the crystal symmetry.

Generally, pushingQ factors of WGM resonators higher
would result in ultimate similarities between properties of
atoms, quantum dots, and the resonator modes. For example,
for very high-Q microresonators the material dispersion re-
sults in significantly nonequidistant mode spectrum. This
spectrum would create an effective “two-level” system
within the resonator. Strong confinement of the light in the
resonator along with highQ factors would result in initializ-
ing efficient nonlinear processes on low light levels even
with small nonlinearities of optically transparent materials.
High efficiency controllable light coupling to the resonator
modesf11g would allow integrating the resonators to optical
fiber networks.

FIG. 5. Phase parameterF for overloadedsad and critically
loadedsbd resonators. All parameters coincide with parameters used
in Figs. 1–3.
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VI. CONCLUSION

We have theoretically studied properties of optical hyper-
parametric oscillations in a high-Q whispering-gallery-mode
resonator. Due to the long interaction times of the pumping
light with the material, even the small cubic nonlinearity of
the material results in an efficient low-threshold generation
of optical sidebands. Beat-note signal between the sidebands
and the pump is characterized with a slow phase diffusion
independent of the phase diffusion of the pumping laser. This
process can be used for the demonstration of a different kind
of an all-optical frequency reference.
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APPENDIX A: HAMILTONIAN AND BASIC EQUATIONS

The Hamiltonian describing the system of three modes
interacting by means of cubic nonlinearity is

H = H0 + V, H0 = "v0a
†a + "v+b+

†b+ + "v−b−
†b−,

V = − "
g

2
sa†a†aa+ b+

†b+
†b+b+ + b−

†b−
†b−b−d − 2"gsb−

†b+
†b+b−

+ a†b+
†b+a + a†b−

†b−ad − "gsb−
†b+

†aa+ a†a†b+b−d, sA1d

wherev0, v+, andv− are the eigenfrequencies of the optical
cavity modes,a, b+, andb− are the annihilation operators for
these modes, respectively,g is the coupling constantfsee Eq.
s5dg. Deriving this coupling constant we assume thatsid the
index of refraction of the material can be presented in the
form n=n0+n2I, whereI denotes the time-average intensity
of the field; sii d the modes are nearly overlapped geometri-
cally, which is true if the frequency difference between them
is small.

The interaction part of the Hamiltonian is found from
usual Kerr HamiltonianV=−"sg/2d : sa+b++b−+H.c.d4:,
where “: ¯ :” means normal ordering, with application of
rotating wave approximation. The simplified interaction
Hamiltonian contains three terms responsible for self-phase
modulation, cross-phase modulation, and four-wave mixing.
This simple model is valid for media with nonresonant elec-
tronic nonlinearities, e.g., some transparent crystals and
fused silicaf24,25g. The sign of the interaction part is de-
rived from expression for a mode resonant frequencyvm
<mc/ sRnd and the definition of the nonlinear index of re-
fraction. It is important to note that the self- and cross-phase
modulation terms of the Hamiltonian have the same order of
magnitude as the four-wave mixing term and hence they in-
fluence significantly the oscillations in the system.

Using HamiltoniansA1d we derive equations of motion
for the field operators,

ȧ = − iv0a + igfa†a + 2b+
†b+ + 2b−

†b−ga + 2iga†b+b−,

sA2d

ḃ+ = − iv+b+ + igf2a†a + b+
†b+ + 2b−

†b−gb+ + igb−
†aa,

sA3d

ḃ− = iv−b− + igf2a†a + 2b+
†b+ + b−

†b−gb− + igb+
†aa.

sA4d

This set of equation describes unitary evolution of the loss-
less system. We consider an open system. To describe the
open system we introduce decay terms as well as Langevin
fluctuation forces. Moreover, we have to take into account
frequency shift due to temperature change of the resonator.
Set sA2d–sA4d transforms to

ȧ = − fiv0 + ik0sTd + g0 + gc0ga + igfa†a + 2b+
†b+ + 2b−

†b−ga

+ 2iga†b+b− + f0 + fc0, sA5d

ḃ+ = − fiv+ + ik+sTd + g+ + gc+gb+ + igf2a†a + b+
†b+

+ 2b−
†b−gb+ + igb−

†aa+ f+ + fc+, sA6d

ḃ− = − fiv− + ik−sTd + g− + gc−gb− + igf2a†a + 2b+
†b+

+ b−
†b−gb− + igb+

†aa+ f− + fc−. sA7d

The Langevin forces are described by the following nonva-
nishing commutation relations:

ff0std, f0
†st8dg = 2g0dst − t8d, ff+std, f+

†st8dg = 2g+dst − t8d,

ff−std, f−
†st8dg = 2g−dst − t8d, ffc0std, fc0

† st8dg = 2gc0dst − t8d,

ffc+std, fc+
† st8dg = 2gc+dst − t8d, ffc−std, fc−

† st8dg = 2gc−dst − t8d,

sA8d

and average values

kfc0l =Î2gc0P0

"v0
e−ivt, kf+l = kf−l = kfc+l = kfc−l = kfcl = 0,

sA9d

whereP0 is the pump power of the mode. We assume that
the fluctuations entering each mode are in the coherent state
and are uncorrelated with each other.

Let us introduce now slowly varying amplitudes for the
mode operators as follows:

a = Ae−ivt,b+ = B+e−iṽ+t,b̂ − = B−e−iṽ−t, sA10d

wherev is the carrier frequency of the external pump of the
modea, ṽ+ and ṽ− are the frequencies of modesb+ andb−,
respectively. Those frequencies obey ratios4d. Then from
Eqs.sA2d–sA4d it is easy to derive Eqs.s1d–s3d for the slow
amplitudes of the intracavity fields. This is the basic set of
equations we are going to analyze. It is worth noting that this
set has a lot in common with the set of coupled wave equa-
tions derived for light propagation in optical fibersf3,26,27g
and atoms in a cavityf28g.
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APPENDIX B: STEADY-STATE SOLUTION OF EQS. (1)–(3)
FOR EXPECTATION VALUES

Let us solve sets1d–s3d in steady state keeping expecta-
tion values only,

G0kAl = igfukAlu2 + 2ukB+lu2 + 2ukB−lu2gkAl + 2igkA*lkB+lkB−l

+ kFc0l, sB1d

G+kB+l = igs2ukAlu2 + 2ukB−lu2 + ukB+lu2dkB+l + igkB−
* lkAl2,

sB2d

G−kB−l = igs2ukAlu2 + ukB−lu2 + 2ukB+lu2dkB−l + igkB+
* lkAl2.

sB3d

It is convenient to introduce combined decay rates for the
modes asg j =g j +gcj, and to rewrite Eqs.sB1d–sB3d as well
as Eq. s4d with respect to dimensionless variablesj
=gukAlu2/g0 where kAl= ukAl uexpif0; B+= ukB+l u / ukAlu
where kB+l= ukB+l uexpif+ ; B−= ukB−l u / ukAlu where kB−l
= ukB−l uexpif−; c=fFc0

−f0 where kFc0l= ukFc0l uexpifFc0
;

f=2f0−f+−f−; D+=fv+−ṽ++ksTdg /g0; and D−=fv−−ṽ−

+ksTdg /g0. The pumping force can be conveniently trans-
formed to a dimensionless valuef =sg/g0d1/2u kFc0l u /g0; di-
mensionless drive detuning can be introducedD0=fv0−v
+ksTdg /g0 as well. We assume that the temperature is stabi-
lized such that it is possible to neglect by the temperature
modification of the resonator FSR, so allki are identical and
equal tok.

Generally, modes of a resonator are not equidistant be-
cause of the second-order dispersion of the material as well
as geometrical dispersion given by the mode structure. To
take the second-order dispersion of the resonator into ac-
count we introduceD=s2v0−v+−v−d /g0.b9 / sg0R

2b83d,
whereb8 andb9 come from the dispersion relation

v

c
nsvd .

v0

c
n0 + b8sv − v0d +

1

2
b9sv − v0d2

for the resonator of radiusR; andv+, v0, andv− are assumed
to be m+1, m, and m−1 modes of the resonatorsvmRnvm
=mc, m@1d.

Finally, we arrive at

Îjs1 − 2jB+B−sinfd = f cosc, sB4d

ÎjhD0 − jf1 + 2sB+
2 + B−

2 + B+B−cosfdgj = f sinc, sB5d

g+B+ + g0jB−sinf = 0, sB6d

fD+ − js2 +B+
2 + 2B−

2dgB+ − jB−cosf = 0, sB7d

g−B− + g0jB+sinf = 0, sB8d

fD− − js2 +B+
2 + 2B−

2dgB− − jB+cosf = 0, sB9d

D+ + D− = 2D0 − D. sB10d

EqationssB6d–sB10d allow us to find parametersj, f, D+, D−
as well as a ratio betweenB+ andB−:

j2 =
g+g−

g0
2 +

g+g−

sg+ + g−d2h2D0 − D − jf4 + 3sB+
2 + B−

2dgj2,

sB11d

sinf = −
Îg+g−

g0j
, sB12d

cosf =
h2D0 − D − jf4 + 3sB+

2 + B−
2dgjÎg+g−

sg+ + g−dj
, sB13d

D+ = s2D0 − Dd
g+

g− + g+

+ js2 +B+
2 + B−

2d
g− − g+

g− + g+

+ jsg−B−
2 − g+B+

2d, sB14d

D− = s2D0 − Dd
g−

g− + g+

− js2 +B+
2 + B−

2d
g− − g+

g− + g+

− jsg−B−
2 − g+B+

2d, sB15d

B+

B−
=Îg−

g+

. sB16d

Now, from Eqs.sB4d and sB5d we find c and, say,B−:

F1 + 2
g−

g0

B−
2G2

+ FD0 − j − 2jB−
2S sg− − g+d2

g+sg+ + g−d

+
g−s2D0 − Dd
jsg+ + g−d

− 3
g−

g+

B−
2DG2

=
f2

j
, sB17d

cosc =
Îj

f
F1 + 2

g−

g0

B−
2G , sB18d

sinc =
Îj

f
FD0 − j − 2jB−

2S sg− − g+d2

g+sg+ + g−d

+
g−s2D0 − Dd
jsg+ + g−d

− 3
g−

g+

B−
2DG . sB19d

To simplify analysis of the set of equations it is conve-
nient to assume thatg+=g−=g0. This assumption is justified
by the fact that identical, closely separated in frequency,
modes of a resonator have identicalQ factors. ThenB+
=B−=B. EquationssB14d and sB15d transform to Eq.s9d.
The oscillation amplitude is determined by Eqs.sB11d and
sB17d, that could be rewritten in the form

4sj2 − 1d − s2D0 − D − 6jB2 − 4jd2 = 0, sB20d

jhs1 + 2B2d2 + fD0 − j − B2s2D0 − D − 6jB2dg2j = f2. sB21d

From Eq.sB20d we get
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D0 = 2j ± Îj2 − 1 +
D

2
+ 3jB2. sB22d

The external pump power with which Eqs.sB20d and sB21d
and have a nontrivial solution approaches its smallest pos-
sible valuesoscillation thresholdd when the laser frequency is
determined by the “2” sign in Eq.sB22d. The threshold con-
ditions sassumingD=0d are

j . 1.175, sB23d

D0 . 1.733, sB24d

f . 1.24. sB25d

EquationsB25d can be rewritten with respect to the pump
power fsee Eq.s10dg.

To find microwave power generated on a photodiode we
rewrite Eq.s11d in the form

Pmw= 2R2rP0
24gc0

2

g0
2

jB2

f2 US2gc0

g0

Îj

f
− e−icD

+ eifS2gc0

g0

Îj

f
− e−icDU2

, sB26d

where we used the relations

S2gc0ukB±lu
ukFc0lu D2

=
4gc0

2

g0
2 =

jB2

f2 ,

sB27d

U2gc0

g0

Îj

f
− e−icU2

=
PA out

P0
.

APPENDIX C: STEADY-STATE SOLUTION
OF EQS. (1)–(3) FOR FLUCTUATIONS—STABILITY

ANALYSIS AND FREQUENCY DRIFT

Substituting Eqs.s13d–s15d into Eqs. s1d–s3d, and intro-
ducingFj =Fcj+Fj, we derive a set of equations for the am-
plitude fluctuations,

dȦ = −
ukFc0lu
ukAlu

cosc dA + 2gukAluukBlu2cosf df

+ ukFc0lusinc df0 + 2gukAluukBlusinf sdB− + dB+d

+
1

2
fsF0 − kFc0lde−if0 + H.c.g, sC1d

dḂ+ = − gukAlusinf f2ukBludA + ukAlusdB− − dB+dg

− gukAlu2ukBlucosf df+
1

2
sF+e−if+ + H.c.d, sC2d

dḂ− = − gukAlusinf f2ukBludA − ukAlusdB− − dB+dg

− gukAlu2ukBlucosf df+
1

2
sF−e−if− + H.c.d sC3d

and phase fluctuations

dḟ0 = S2gukAlu2 −
ukFc0lu
ukAlu

sincD dA

ukAlu
−

ukFc0lu
ukAlu

cosc df0

+ 2gukBlus2 + cosfdsdB− + dB+d− 2gukBlu2sinf df

+
sF0 − kFc0lde−if0 − H.c.

2i ukAlu
, sC4d

dḟ+ = 2gukAluF2dA +
ukBlu
ukAlu

s2dB− + dB+dG
+ gukAlucosf F2dA +

ukAlu
ukBlu

sdB− − dB+dG
− gukAlu2sinf df +

F+e−if+ − H.c.

2i ukBlu
, sC5d

dḟ− = 2gukAluF2dA +
ukBlu
ukAlu

s2dB+ + dB−dG
+ gukAlucosf F2dA −

ukAlu
ukBlu

sdB− − dB+dG
− gukAlu2sinf df +

F−e−if− − H.c.

2i ukBlu
. sC6d

Using this set we derive two equation sets,

dȦ = −
ukFc0lu
ukAlu

cosc dA + 2gukAluukBlu2cosf df

+ ukFc0lusinc df0 + 2gukAluukBlusinf sdB− + dB+d

+
1

2
ssF0 − kFc0lde−if0 + H.c.d, sC7d

dḟ0 = S2gukAlu2 −
ukFc0lu
ukAlu

sincD dA

ukAlu
−

ukFc0lu
ukAlu

cosc df0

+ 2gukBlus2 + cosfdsdB− + dB+d− 2gukBlu2sinf df

+
sF0 − kFc0lde−if0 − H.c.

2i ukAlu
, sC8d

dḂ+ + dḂ− = − 4gukAluukBlusinf dA − 2gukBluukAlu2cosf df

+
1

2
sF+e−if+ + F−e−if− + H.c.d, sC9d

dḟ = − 2F2gukAlu2s1 + cosfd +
ukFc0lu
ukAlu

sincG dA

ukAlu

− 2
ukFc0lu
ukAlu

cosc df0 + 2gukBlus1 + 2 cosfdsdB− + dB+d

+ 2g sinf sukAlu2 − 2ukBlu2ddf

+
sF0 − kFc0lde−if0 − H.c.

i ukAlu
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−
F+e−if+ − H.c.

2i ukBlu
−

F−e−if− − H.c.

2i ukBlu
, sC10d

and

dḟ+ − dḟ− = 2gsukAlu2cosf + ukBlu2d
dB− − dB+

ukBlu

+
1

2i ukBlu
sF+e−if+ − F−e−if− − H.c.d,

sC11d

dḂ− − dḂ+ = 2gukAlu2sinf sdB− − dB+d

+
1

2
sF−e−if− − F+e−if+ + H.c.d, sC12d

Using the first set we could study the stability of the oscilla-
tions. The second set of equations, always stable because
sinf,0, allows us to find the phase diffusion of the beat
note generated in the process of adsorption of the pump and
sidebands on a fast photodiode.

Keeping in mind that in the case of stable oscillations

dḂ−−dḂ+=0, we arrive at

dḟ+ − dḟ− =
ukAlu2 cosf + ukBlu2

ukAlu2 sinf

F+e−if+ − F−e−if− + H.c.

2ukBlu

3
F+e−if+ − F−e−if− − H.c.

2i ukBlu
sC13d

or, using the fact that the equation corresponding to the en-
ergy conservation laws4d can be derived in the case of long
integration time for stable oscillations,

dḟ = 2dḟ0 − dḟ+ − dḟ− . 0, sC14d

we obtain

dḟ+ − dḟ0 = dḟ0 − dḟ−

=
ukAlu2cosf + ukBlu2

ukAlu2sinf

F+e−if+ − F−e−if− + H.c.

4ukBlu

+
F+e−if+ − F−e−if− − H.c.

4i ukBlu
. sC15d

Using expressionsfsee Eq.sB12dg sinf=−1/j and cosf
= ±Îj2−1/j we derive the expression for the diffusion coef-
ficient for the beat note,

Dmw= f1 + sÎj2 − 1 ± jB2d2gg0
2

4

"v0

PB out
, sC16d

resulting in Eq.s16d in the limit j<1. This is a valid ap-
proximation. For instance, in the case of overcoupled reso-
nator and optimum laser tuningssee Fig. 4d the parameterj
has the power dependence depicted in Fig. 6.

f1g D. N. Klyshko, Photons and Nonlinear OpticssTaylor and
Francis, New York, 1988d.

f2g G. P. Agrawal,Nonlinear Fiber OpticssAcademic Press, New
York, 1995d.

f3g R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron.
QE-18, 1062s1982d.

f4g S. Coen and M. Haelterman, Opt. Lett.26, 39 s2001d.
f5g P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, J.

Opt. Soc. Am. B21, 357 s2004d.
f6g D. Grandclement, G. Grynberg, and M. Pinard, Phys. Rev.

Lett. 59, 40 s1987d.
f7g D. Grandclement, G. Grynberg, and M. Pinard, Phys. Rev.

Lett. 59, 44 s1987d.
f8g G. Khitrova, J. F. Valley, and H. M. Gibbs, Phys. Rev. Lett.

60, 1126s1988d.
f9g A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett.

83, 4049s1999d.
f10g J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, Phys.

Rev. A 66, 023808s2002d.
f11g K. J. Vahala, NaturesLondond 424, 839 s2003d.
f12g C. Conti, A. Di Falco, and G. Assanto, Opt. Express12, 823

s2004d.
f13g T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev.

Lett. 93, 083904s2004d.
f14g A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg,

V. S. Ilchenko, and L. Maleki, Phys. Rev. Lett.93, 243905
s2004d.

f15g A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L.
Maleki, Phys. Rev. A70, 051804s2004d.

f16g M. L. Gorodetsky and V. S. Ilchenko, Laser Phys.2, 1004
s1992d.

f17g A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S.
Ilchenko, Proc. SPIE5333, 231 s2004d.

f18g T. Carmon, L. Yang, and K. J. Vahala, Opt. Express12, 4742
s2004d.

f19g M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O.

FIG. 6. Parameterj corresponding to the optimum sideb and
power achieved at the optimum detuning of the pump laser fre-
quencyssee Fig. 4d versus the input pump power for the case of
identical modes of an overcoupled resonator. The solid line st and s
for a dispersionless resonatorsD=0d, the dashed line st and sfor the
resonator with nonzero dispersionsD=0.3d.

OPTICAL HYPERPARAMETRIC OSCILLATIONS IN A… PHYSICAL REVIEW A 71, 033804s2005d

033804-9



Scully, Phys. Rev. Lett.84, 3558s2000d.
f20g V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L.

Maleki, J. Opt. Soc. Am. A20, 157 s2003d.
f21g L. Maleki, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko,

Proc. SPIE5104, 1 s2003d.
f22g S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature

sLondond 415, 621 s2002d.
f23g H.-B. Lin and A. J. Campillo, Phys. Rev. Lett.73, 2440

s1994d.

f24g P. D. Maker and R. W. Terhune, Phys. Rev.137, A801 s1965d.
f25g R. W. Boyd, Nonlinear OpticssAcademic Press, New York,

1992d.
f26g J. Bar-Joseph, A. A. Friesem, R. G. Waarts, and H. H. Yaffe,

Opt. Lett. 11, 534 s1986d.
f27g G. Cappellini and S. Trillo, J. Opt. Soc. Am. B8, 824 s1991d.
f28g M. Brambilla, F. Castelli, L. A. Lugiato, F. Prati, and G. Strini,

Opt. Commun.83, 367 s1991d.

MATSKO et al. PHYSICAL REVIEW A 71, 033804s2005d

033804-10


